Tuesday, August 14, 2012

Mushroom Masala


ಅಣಬೆ ಮಸಾಲ
ಬೇಕಾಗುವ ಸಾಮಾನುಗಳು:
2 ಕಪ್ ಅಣಬೆ(Mushroom),
1 ಕಪ್ ಸಣ್ಣದಾಗಿ ಹೆಚ್ಚಿದ ಈರುಳ್ಳಿ,
1 ಕಪ್ ಟೊಮ್ಯಾಟೊ,
2 ಟೇಬಲ್ ಸ್ಪೂನ್ ಬೆಳ್ಳುಳ್ಳಿ ಮತ್ತು ಹಸಿ ಶುಂಠಿ,
2 ಟೇಬಲ್ ಸ್ಪೂನ್ ಎಣ್ಣೆ,
2 ಟೇಬಲ್ ಸ್ಪೂನ್ ಚಿಕನ್ ಮಸಾಲ,
ಉಪ್ಪು ರುಚಿಗೆ ತಕ್ಕಸ್ಟು,
1/2 ಟೇಬಲ್ ಸ್ಪೂನ್ ಹರಿಸಿನ,
ಮಾಡುವ ವಿದಾನ:
1.ಒಲೆಯ ಮೇಲೆ ಒಂದು ಪಾತ್ರೆ ಯನ್ನು ಇಟ್ಟು,ಅದಕ್ಕೆ ಎಣ್ಣೆ
ಹಾಕಬೇಕು,ಎಣ್ಣೆ ಬಿಸಿ ಆದಮೇಲೆ,ಹೆಚ್ಚಿದ ಈರುಳ್ಳಿ
ಮತ್ತು ಬೆಳ್ಳುಳ್ಳಿ ಮತ್ತು ಹಸಿ ಶುಂಠಿ
ಯನ್ನು ಹಾಕಬೇಕು.ಚೆನ್ನಾಗಿ ಫ್ರೈ ಮಾಡಬೇಕು.
2.ನಂತರ ಇದಕ್ಕೆ ಟೊಮ್ಯಾಟೊ,ಕತ್ತರಿಸಿದ ಅಣಬೆ
(Mushroom),ಹರಿಸಿನ ವನ್ನು ಹಾಕಿ ಚೆನ್ನಾಗಿ ಮಿಶ್ರ
ಮಾಡಬೇಕು.
3.ನಂತರ ಇದಕ್ಕೆ ಉಪ್ಪು ರುಚಿಗೆ ತಕ್ಕಸ್ಟು,ಚಿಕನ್ ಮಸಾಲ
ಹಾಕಿ,12 ರಿಂದ 15 ನಿಮಿಷ ಗಳ ಬೇಯಿಸಿದರೆ ಅಣಬೆ ಮಸಾಲ
(Mushroom Masala) ಸಿದ್ದವಾಗುತದೆ.

Sunday, August 12, 2012

ಶ್ರೀ ಕ್ಷೇತ್ರ ಕಮಲಶಿಲೆ ಶ್ರೀಬ್ರಾಹ್ಮೀ ದುರ್ಗಾಪರಮೇಶ್ವರಿ


1. ಶ್ರೀ ಕ್ಷೇತ್ರ ಕಮಲಶಿಲೆಯಲ್ಲಿ ಪವಿತ್ರ ನದಿ ಕುಬ್ಜೆ ಮತ್ತು ನಾಗ ತೀರ್ಥ ಉಕ್ಕಿ ಹರಿದು ಶ್ರೀದೇವಿಯ ಪಾದಗಳನ್ನು ತೊಳೆದ ಕ್ಷಣಗಳು.
ಪ್ರತಿ ವರ್ಷವೂ ಹೀಗೆ ನಡೆಯುತ್ತದೆ.
2. ತೀರ್ಥಸ್ನಾಕ್ಕಾಗಿ ಸೇರಿದ ಸುತ್ತ ಏಳು ಗ್ರಾಮದ ಜನ.
3. ನದಿಯ ನೀರು ದೇವಳದ ಒಳ ಭಾಗವನ್ನು ಪ್ರವೇಶಿಸುವ ಸ್ಥಳ
4. ಉಕ್ಕಿ ಹರಿವ ಕುಬ್ಜೆ . ಪಿ೦ಗಳೆ ಎ೦ಬ ದೇವಲೋಕದ ನರ್ತಕಿ ತನ್ನ ಪಾಪ ಕಳೆಯಲು ಶ್ರೀಕ್ಷೇತ್ರದಲ್ಲಿ ಕುಬ್ಜೆಯಾಗಿ ಹರಿದು, ಪ್ರತಿ ವರ್ಷ ಶ್ರೀಬ್ರಾಹ್ಮೀ ದುರ್ಗಾಪರಮೇಶ್ವರಿಯ ಪಾದವನ್ನು ತೊಳೆಯುವಳು ಎ೦ಬ ಪ್ರತೀತಿ ಇದೆ.

ಶ್ರೀ ತಾಯಿ ಮುಕಾಂಬಿಕಾ ,ಬೇಡಿದ ವರಗಳನ್ನು ಕೊಡುವ ಕೊಡಚಾದ್ರಿ ಮಾತೆ


Haladi Shrinivasa shetty

ನಿಜಕ್ಕೂ ಕೆಸರಿನಲ್ಲಿ ಅರಳಿದ ಕಮಲ ವೆಂದರೆ ನೀವೇ
ಇದು ನಿಮಗೊಬರಿಗೆ ಆದಾ ಅನ್ಯಾಯ ವಲ್ಲ ಇಡಿ ಕುಂದಾಪುರದ ಜನತೆ ಗೆ ಅದ ಅನ್ಯಾಯ
ನಿಮಗೆ ನಮ್ಮ ಬೆಂಬ ಲ ನಿಮ್ಮೊಂದಿಗೆ ನಾವು
ನೀವು ಬಿ ಜೆ ಪಿ ಗೆ ಅನಿವಾರ್ಯ ನಿಮಗೆ ಬಿ ಜೆ ಪಿ ಅನಿವಾರ್ಯ ಅಲ್ಲಾ ಅಣ್ಣಾ

Padmashree Chittani Ramachandra Hegade

ನಿನ್ನಯಾ ಬಲು ಹೇನು ಮಾರುತಿ ...
ಅಬ್ಬಾಎಂಥ ಕುಣಿತಾ
ಹವುದು 61ವರ್ಷಗಳ ಕಾಲ ಯಕ್ಷರಂಗದ ಅನಬಿಷಿಕ್ತ ದೋರೆ ಯಾಗಿ ಮೇರೆದು...ಅಬಿಮಾನಿಗಳೇ ಅಂತ ರಂಗದ ದೇವರೆಂದು ತಿಳಿದು
ಪ್ರಸಂಗ ಒಂದೇ ಆದರು ದಿನಕೊಂದು ರೀತಿಯಲ್ಲಿ ಕುಣಿದು ಯಕ್ಷ ರಸಿಕನ ಮನಕ್ಕೆ ರಸ ದ್ವುತಣ ನೀಡಿ ಯಕ್ಷ ಗಾನ ಕ್ಷೇತ್ರಕ್ಕೆ ಅಪಾರ ಕೊಡುಗೆ ನೀಡಿದ ಚಿಟ್ಟಾಣಿ ರಾಮಚಂದ್ರ ತಾತ ನೂರ್ ಕಾಲಬಾಳಲಿ
ಚಿಟ್ಟಾಣಿ ಅಜ್ಜ ನೀಡಿದ ಆದರ್ಶಗಳು ಇವತ್ಹಿನ ನಮ್ಮ ಯುವ ಯಕ್ಷ ಕಲಾವಿದರಿಗೆ ದಾರಿ ದೀಪ ವಾಗಲಿ
ಯಕ್ಷಗನಂ ಗೆಲ್ಗೆ -ಯಕ್ಷ ಗಾನಂ ಬಾಲ್ಗೆ

Thursday, July 26, 2012

Suralu Palace

ಸುರಾಲು ಅರಮನೆ (Suralu Palace).....

ಉಡುಪಿಯಿಂದ 28 ಕಿಮೀ ದೂರದ ಸುರಾಲುವಿನಲ್ಲಿರುವ ರಾಜ್ಯದ ಏಕೈಕ ಮಣ್ಣಿನ ಅರಮನೆಯೆಂಬ ಖ್ಯಾತಿಯ ಸುರಾಲು ಮಣ್ಣಿನ ಅರಮನೆ ಈಗ ಕುಸಿಯುತ್ತಿದೆ.

ಎಕರೆ ಭೂಮಿಯ ವ್ಯಾಪ್ತಿಯನ್ನು ಹೊಂದಿರುವ ಸುರಾಲು ಅರಮನೆಯ ಹಿಂದೆ 5 ಶತಮಾನಗಳ ಇತಿಹಾಸವಿದೆ. 16 ನೇ ಶತಮಾನದ ಸುಮಾರಿಗೆ ಜೈನ ಅರಸರು ತುಳುನಾಡಿನಲ್ಲಿ ನಿರ್ಮಿಸಿದ್ದ 12 ಮಣ್ಣಿನ ಅರಮನೆಗಳಲ್ಲಿ ಉಳಿದಿರುವುದು ಈಗ ಸುರಾಲು ಮಣ್ಣಿನರಮನೆ ಮಾತ್ರ. ಹಸಿರುಗದ್ದೆಗಳ ನಡುವಿನ ಸುಂದರ ಅರಮನೆ ಈಗ ಕುಸಿಯತೊಡಗಿದ್ದು , ಅಮೂಲ್ಯ ಸ್ಮಾರಕವೊಂದು ಮಣ್ಣಾಗುವತ್ತ ದಾಪುಗಾಲಿಡುತ್ತಿದೆ.

ಪ್ರಸ್ತುತ ಯುನೆಸ್ಕೋದಲ್ಲಿರುವ ಚಿರಂಜೀವಿ ಸಿಂಗ್‌ ರಾಜ್ಯ ಪ್ರಾಚ್ಯ ವಸ್ತು ಇಲಾಖೆಯ ನಿರ್ದೇಶಕರಾಗಿದ್ದಾಗ ಅರಮನೆಯ ನವೀಕರಣ ಕಾರ್ಯ ಪ್ರಾರಂಭವಾಯಿತು. ಅಂದಾಜು ಕೋಟಿ ರುಪಾಯಿಯ ಈ ಯೋಜನೆ ಮುಕ್ಕಾಲು ವಾಸಿ ಮುಗಿದಿದ್ದರೂ, ಸರ್ಕಾರ ಈವರೆಗೆ ಹಣ ಮಂಜೂರು ಮಾಡಿರುವುದು 35 ಲಕ್ಷ ರುಪಾಯಿ ಮಾತ್ರ. 70 ಲಕ್ಷ ರುಪಾಯಿ ಕಾಮಗಾರಿ ಮುಗಿದರೂ ಸರ್ಕಾರ ಕಾಲಕಾಲಕ್ಕೆ ಸರಿಯಾಗಿ ಹಣ ಮಂಜೂರು ಮಾಡದಿರುವುದರಿಂದ ಗುತ್ತಿಗೆದಾರರು ಕಾಮಗಾರಿಯನ್ನು ಸ್ಥಗಿತಗೊಳಿಸಿದ್ದಾರೆ.

ಸೋರುತಿಹುದು ಅರಮನೆಯ ಮಾಳಿಗೆ : ಅರಮನೆಯ ಮಾಡಿಗೆ ಹಂಚು ಹೊದಿಸುವ ಕೆಲಸವನ್ನು ಹಣದ ಕೊರತೆಯ ಕಾರಣವೊಡ್ಡಿ ನಿಲ್ಲಿಸಿರುವುದರಿಂದ ಸುರಾಲು ಅರಮನೆಯ ಮಾಡು ಸೋರುತ್ತಿದೆ. ಮಳೆ ನೀರಿಗೆ ಗೋಡೆಗಳು ಕುಸಿಯುತ್ತಿವೆ. ಅಪರೂಪದ ಕಾಷ್ಠಶಿಲ್ಪ ಬೂಸ್ಟು ಹಿಡಿದು ಹಾಳಾಗುತ್ತಿದೆ.

ಪೂರ್ಣವಾಗಿ ಮಣ್ಣು ಹಾಗೂ ಮರಗಳನ್ನು ಬಳಸಿ ನಿರ್ಮಿಸಿರುವುದೇ ಸುರಾಲು ಅರಮನೆಯ ವೈಶಿಷ್ಟ್ಯ. ಈ ಅರಮನೆಯನ್ನು ನಿರ್ಮಿಸಿದ್ದು , ತುಳುನಾಡಿನ ರಾಜಮನೆತನಗಳಲ್ಲಿ ಒಂದಾದ ತೋಳಾರ ವಂಶದ ಅರಸರು. ಸುರಾಲು ಅವರ ರಾಜಧಾನಿ. 1511 ರ ಹೊತ್ತಿಗೆ ನಿರ್ಮಿಸಲ್ಪಟ್ಟ ಎರಡುಪ್ಪರಿಗೆಯ ಈ ಅರಮನೆ ಸುರಾಲು ಅರಮನೆ ಎಂದೇ ಹೆಸರಾಗಿದೆ. ಸುಟ್ಟ ಆವೆ ಮಣ್ಣಿನಿಂದ ಕಟ್ಟಲಾಗಿರುವ ಗೋಡೆಗೆ ಹುಲ್ಲು ಬೆರೆಸಿದ ಗಾರೆ ಲೇಪಿಸಿದೆ. ಗಾರೆಯ ಮೇಲೆ ಸಗಣಿ ನೀರಿನ ಲೇಪನ. ಮಾಡಿನ ಹೊದಿಕೆ ನಾಡ ಹಂಚಿನದು. ಕಿಟಕಿ, ಬಾಗಿಲು, ಕಂಬ ಹಾಗೂ ಮುಚ್ಚಿಗೆಗಳಲ್ಲಿ ಕಾಷ್ಠ ಕೆತ್ತನೆಯ ವೈಭವವಿದೆ. ಅರಮನೆಯ ವಾಸ್ತುಶಿಲ್ಪ ಹಿಂದೂ- ಜೈನ ಸಂಪ್ರದಾಯ ಎರಡನ್ನೂ ಒಳಗೊಂಡಿದ್ದು. ಅರಮನೆಯಲ್ಲಿ ಪದ್ಮಾವತಿ ಹಾಗೂ ಕುಮಾರ ರಾಯನ ಮಂಚವಿದ್ದು, ಅವುಗಳಿಗೆ ಇಂದಿಗೂ ನಿತ್ಯಪೂಜೆ ಸಲ್ಲು ತ್ತಿದೆ.

ಮಾತು ತಪ್ಪಿದ ಅಯ್ಯರ್ : ಅರಮನೆಯ ವಾರಸುದಾರರು ವಿವಿಧೆಡೆಗಳಲ್ಲಿ ಹಂಚಿ ಹೋಗಿದ್ದಾರೆ. 1983 ರಿಂದ ಅರಮನೆಯಲ್ಲಿ ಯಾರೂ ವಾಸಿಸುತ್ತಿಲ್ಲ . ಚಲನ ಚಿತ್ರದ ಶೂಟಿಂಗ್‌ಗೂ ಅರಮನೆ ಬಳಕೆಯಾಗಿದೆ. 1987ರಲ್ಲಿ ಜಿ.ವಿ. ಅಯ್ಯರ್ ಅವರ ಮಧ್ವಾಚಾರ್ಯ ಚಿತ್ರದ ಶೂಟಿಂಗ್‌ ನಡೆದದ್ದು ಇಲ್ಲೇ. ಚಿತ್ರೀಕರಣದ ನಂತರ ಅರಮನೆಯನ್ನು ಪೂರ್ವ ಸ್ಥಿತಿಯಲ್ಲೇ ಉಳಿಸುವುದಾಗಿ ನೀಡಿದ್ದ ವಚನವನ್ನು ಅಯ್ಯರ್ ಜಾರಿಗೆ ತರಲಿಲ್ಲ ಎಂದು ಅರಮನೆಯ ವಾರಸುದಾರರಲ್ಲಿ ಒಬ್ಬರಾದ ಸಂತೋಷ್‌ ಕುಮಾರ್ ಹೇಳುತ್ತಾರೆ.

ಜಿಲ್ಲೆಯಲ್ಲಿ ಮಳೆ ಧಾರಾಕಾರವಾಗಿ ಸುರಿಯುತ್ತಿದ್ದು , ಮಣ್ಣಿನ ಅರಮನೆ ಕರಗುತ್ತಿದೆ. ಅರಮನೆಗೆ ತಕ್ಷಣವೇ ನಾಡಹಂಚು ತೊಡಿಸದಿದ್ದಲ್ಲಿ ಈಗಾಗಲೇ ಮಣ್ಣಾಗಿರುವ 11 ಮಣ್ಣಿನರಮನೆಗಳ ಜೊತೆಗೆ ಸುರಾಲು ಅರಮನೆಯೂ ಸೇರುತ್ತದೆ. ಅರಮನೆಯ ಮಾಡಿಗೆ ಅಂದಾಜು 2 ಲಕ್ಷ ಹಂಚುಗಳು ಅವಶ್ಯವಿದ್ದು , ಇದಕ್ಕೆ 10 ಲಕ್ಷ ರುಪಾಯಿಗಳು ಬೇಕು. ಸರ್ಕಾರ ಹಣ ಮಂಜೂರು ಮಾಡುವುದು ನಿಧಾನವಾದಷ್ಟೂ ಅರಮನೆ ಕರಗುವುದು ಮುಂದುವರಿಯುತ್ತದೆ.

ಕೃಪೆ - ಅಂತರ್ಜಾಲ

Wednesday, July 18, 2012

Device Driver Testing Tutorial

What is Device Drivers??


Device drivers are software programs they are in between hardware and software layers.

The hardware abstraction layer of the operating system (OS) interacts directly with the device driver subsystem to send and receive commands between the application software layer and the actual device hardware.

In device driver development understanding of hardware timings and commands is very important.

Strategies for testing drivers:-

Its better to use Automation Testing to find out most of the bugs
Better to test early stage in development to catch bugs to avoid more risk
Use configuration and device testing
Use Equivalence partition testing


Have you ever realize it


Have you ever...

...Felt sad that your dream wasn't real?

...Coughed in front of a smoker to make him feel guilty?

...Tried to finish a dream by going back to sleep?

...Charged your phone for 5 minutes because you thought it would make a difference?

...Found money in your pocket you never thought you had?

...Planned with your friends before you actually ask for your parents’ permission?

...Tried to balance a light switch?

...Sent a risky text and felt like eternity while waiting for the reply?

...Made crazy scenarios in your head that won't actually ever happen?

...Carefully close the Refrigerator door to watch its light go off?

...Felt a moment of joy when you saw your crush smile at you?

That’s Life!

Every Moment is Special.
we realize it later..:)

Tuesday, July 10, 2012

An adorable sight of affection between humans and elephant


Swami Vivekananda speech

I am proud to belong to a nation which has sheltered the persecuted and the refugees of all religions and all nations of the earth. I am proud to tell you that we have gathered in our bosom the purest remnant of the Israelites who came to Southern India and took refuge with us in very year in which their holy temple was shattered to pieces by Roman tyranny. I am proud to belong to the religion which has sheltered and is still fostering the remnant of the grand Zoroastrian nation.

---Swami Vivekananda

ICC T20 word cup 2012 schedule srilanka


Farmer Sucide why?


Tuesday, March 27, 2012

C# Interview Questions & Answers

C# Interview Questions & Answers : 1. Does C# support multiple-inheritance? No. 2. Who is a protected class-level variable available to? It is available to any sub-class (a class inheriting this class). 3. Are private class-level variables inherited? Yes, but they are not accessible. Although they are not visible or accessible via the class interface, they are inherited. 4. Describe the accessibility modifier “protected internal”. It is available to classes that are within the same assembly and derived from the specified base class. 5. What’s the top .NET class that everything is derived from? System.Object. 6. What does the term immutable mean? The data value may not be changed. Note: The variable value may be changed, but the original immutable data value was discarded and a new data value was created in memory. 7. What’s the difference between System.String and System.Text.StringBuilder classes? System.String is immutable. System.StringBuilder was designed with the purpose of having a mutable string where a variety of operations can be performed. 8. What’s the advantage of using System.Text.StringBuilder over System.String? StringBuilder is more efficient in cases where there is a large amount of string manipulation. Strings are immutable, so each time a string is changed, a new instance in memory is created. 9. Can you store multiple data types in System.Array? No. 10. What’s the difference between the System.Array.CopyTo() and System.Array.Clone() ? The Clone() method returns a new array (a shallow copy) object containing all the elements in the original array. The CopyTo() method copies the elements into another existing array. Both perform a shallow copy. A shallow copy means the contents (each array element) contains references to the same object as the elements in the original array. A deep copy (which neither of these methods performs) would create a new instance of each element's object, resulting in a different, yet identacle object. 11. How can you sort the elements of the array in descending order? By calling Sort() and then Reverse() methods. 12. What’s the .NET collection class that allows an element to be accessed using a unique key? HashTable. 13. What class is underneath the SortedList class? A sorted HashTable. 14. Will the finally block get executed if an exception has not occurred? Yes. 15. What’s the C# syntax to catch any possible exception? A catch block that catches the exception of type System.Exception. You can also omit the parameter data type in this case and just write catch {}. 16. Can multiple catch blocks be executed for a single try statement? No. Once the proper catch block processed, control is transferred to the finally block (if there are any). 17. Explain the three services model commonly know as a three-tier application. Presentation (UI), Business (logic and underlying code) and Data (from storage or other sources).

Tuesday, February 7, 2012

Karantaka (Bangalore) Ration Card - Online Registration

http://ahara.kar.nic.in/

English/Kannada version available.

Important Unix Questions

1. How are devices represented in UNIX?
All devices are represented by files called special files that are located in/dev directory. Thus, device files and other files are named and accessed in the same way. A 'regular file' is just an ordinary data file in the disk. A 'block special file' represents a device with characteristics similar to a disk (data transfer in terms of blocks). A 'character special file' represents a device with characteristics similar to a keyboard (data transfer is by stream of bits in sequential order).

2. What is 'inode'?
All UNIX files have its description stored in a structure called 'inode'. The inode contains info about the file-size, its location, time of last access, time of last modification, permission and so on. Directories are also represented as files and have an associated inode. In addition to descriptions about the file, the inode contains pointers to the data blocks of the file. If the file is large, inode has indirect pointer to a block of pointers to additional data blocks (this further aggregates for larger files). A block is typically 8k.
Inode consists of the following fields:
> File owner identifier
> File type
> File access permissions
> File access times
> Number of links
> File size
> Location of the file data

3. Brief about the directory representation in UNIX
A Unix directory is a file containing a correspondence between filenames and inodes. A directory is a special file that the kernel maintains. Only kernel modifies directories, but processes can read directories. The contents of a directory are a list of filename and inode number pairs. When new directories are created, kernel makes two entries named '.' (refers to the directory itself) and '..' (refers to parent directory).
System call for creating directory is mkdir (pathname, mode).

4. What are the Unix system calls for I/O?
> open(pathname,flag,mode) - open file
> creat(pathname,mode) - create file
> close(filedes) - close an open file
> read(filedes,buffer,bytes) - read data from an open file
> write(filedes,buffer,bytes) - write data to an open file
> lseek(filedes,offset,from) - position an open file
> dup(filedes) - duplicate an existing file descriptor
> dup2(oldfd,newfd) - duplicate to a desired file descriptor
> fcntl(filedes,cmd,arg) - change properties of an open file
> ioctl(filedes,request,arg) - change the behaviour of an open file
The difference between fcntl anf ioctl is that the former is intended for any open file, while the latter is for device-specific operations.

5. How do you change File Access Permissions?
Every file has following attributes:
> owner's user ID ( 16 bit integer )
> owner's group ID ( 16 bit integer )
> File access mode word
'r w x -r w x- r w x'
(user permission-group permission-others permission)
r-read, w-write, x-execute
To change the access mode, we use chmod(filename,mode).
Example 1:
To change mode of myfile to 'rw-rw-r--' (ie. read, write permission for user - read,write permission for group - only read permission for others) we give the args as:
chmod(myfile,0664) .
Each operation is represented by discrete values
'r' is 4
'w' is 2
'x' is 1
Therefore, for 'rw' the value is 6(4+2).
Example 2:
To change mode of myfile to 'rwxr--r--' we give the args as:
chmod(myfile,0744).

6. What are links and symbolic links in UNIX file system?
A link is a second name (not a file) for a file. Links can be used to assign more than one name to a file, but cannot be used to assign a directory more than one name or link filenames on different computers.
Symbolic link 'is' a file that only contains the name of another file.Operation on the symbolic link is directed to the file pointed by the it.Both the limitations of links are eliminated in symbolic links.
Commands for linking files are:
Link ln filename1 filename2
Symbolic link ln -s filename1 filename2

7. What is a FIFO?
FIFO are otherwise called as 'named pipes'. FIFO (first-in-first-out) is a special file which is said to be data transient. Once data is read from named pipe, it cannot be read again. Also, data can be read only in the order written. It is used in interprocess communication where a process writes to one end of the pipe (producer) and the other reads from the other end (consumer).

8. How do you create special files like named pipes and device files?
The system call mknod creates special files in the following sequence.
1. kernel assigns new inode,
2. sets the file type to indicate that the file is a pipe, directory or special file,
3. If it is a device file, it makes the other entries like major, minor device numbers.
For example:
If the device is a disk, major device number refers to the disk controller and minor device number is the disk.

9. Discuss the mount and unmount system calls
The privileged mount system call is used to attach a file system to a directory of another file system; the unmount system call detaches a file system. When you mount another file system on to your directory, you are essentially splicing one directory tree onto a branch in another directory tree. The first argument to mount call is the mount point, that is , a directory in the current file naming system. The second argument is the file system to mount to that point. When you insert a cdrom to your unix system's drive, the file system in the cdrom automatically mounts to /dev/cdrom in your system.

10. How does the inode map to data block of a file?
Inode has 13 block addresses. The first 10 are direct block addresses of the first 10 data blocks in the file. The 11th address points to a one-level index block. The 12th address points to a two-level (double in-direction) index block. The 13th address points to a three-level(triple in-direction)index block. This provides a very large maximum file size with efficient access to large files, but also small files are accessed directly in one disk read.

11. What is a shell?
A shell is an interactive user interface to an operating system services that allows an user to enter commands as character strings or through a graphical user interface. The shell converts them to system calls to the OS or forks off a process to execute the command. System call results and other information from the OS are presented to the user through an interactive interface. Commonly used shells are sh,csh,ks etc.

SECTION - II
PROCESS MODEL and IPC

1. Brief about the initial process sequence while the system boots up.
While booting, special process called the 'swapper' or 'scheduler' is created with Process-ID 0. The swapper manages memory allocation for processes and influences CPU allocation. The swapper inturn creates 3 children:
> the process dispatcher,
> vhand and
> dbflush
with IDs 1,2 and 3 respectively.
This is done by executing the file /etc/init. Process dispatcher gives birth to the shell. Unix keeps track of all the processes in an internal data structure called the Process Table (listing command is ps -el).

2. What are various IDs associated with a process?
Unix identifies each process with a unique integer called ProcessID. The process that executes the request for creation of a process is called the 'parent process' whose PID is 'Parent Process ID'. Every process is associated with a particular user called the 'owner' who has privileges over the process. The identification for the user is 'UserID'. Owner is the user who executes the process. Process also has 'Effective User ID
' which determines the access privileges for accessing resources like files.
getpid() -process id
getppid() -parent process id
getuid() -user id
geteuid() -effective user id

3. Explain fork() system call.
The `fork()' used to create a new process from an existing process. The new process is called the child process, and the existing process is called the parent. We can tell which is which by checking the return value from `fork()'. The parent gets the child's pid returned to him, but the child gets 0 returned to him.

4. Predict the output of the following program code
main()
{
fork();
printf("Hello World!");
}
Answer:
Hello World!Hello World!
Explanation:
The fork creates a child that is a duplicate of the parent process. The child begins from the fork().All the statements after the call to fork() will be executed twice.(once by the parent process and other by child). The statement before fork() is executed only by the parent process.

5. Predict the output of the following program code
main()
{
fork(); fork(); fork();
printf("Hello World!");
}
Answer:
"Hello World" will be printed 8 times.
Explanation:
2^n times where n is the number of calls to fork()

6. List the system calls used for process management:
System calls Description
fork() To create a new process
exec() To execute a new program in a process
wait() To wait until a created process completes its execution
exit() To exit from a process execution
getpid() To get a process identifier of the current process
getppid() To get parent process identifier
nice() To bias the existing priority of a process
brk() To increase/decrease the data segment size of a process

7. How can you get/set an environment variable
from a program?
Getting the value of an environment variable is done by using `getenv()'.
Setting the value of an environment variable is done by using `putenv()'.

8. How can a parent and child process communicate?
A parent and child can communicate through any of the normal inter-process communication
schemes (pipes, sockets, message queues, shared memory), but also have some special ways to communicate that take advantage of their relationship as a parent and child. One of the most obvious is that the parent can get the exit status of the child.

9. What is a zombie?
When a program forks and the child finishes before the parent, the kernel still keeps some of its information about the child in case the parent might need it - for example, the parent may need to check the child's exit status. To be able to get this information, the parent calls `wait()'; In the interval between the child terminating and the parent calling `wait()', the child is said to be a `zombie' (If you do `ps', the child will have a `Z' in its status field to indicate this.)

10. What are the process states in Unix?
As a process executes it changes state according to its circumstances. Unix processes have the following states:
Running : The process is either running or it is ready to run .
Waiting : The process is waiting for an event or for a resource.
Stopped : The process has been stopped, usually by receiving a signal.
Zombie : The process is dead but have not been removed from the process table.

11. What Happens when you execute a program?
When you execute a program on your UNIX system, the system creates a special environment for that program. This environment contains everything needed for the system to run the program as if no other program were running on the system. Each process has process context, which is everything that is unique about the state of the program you are currently running. Every time you execute a program the UNIX system does a fork, which performs a series of operations to create a process context and then execute your program in that context. The steps include the following:
> Allocate a slot in the process table, a list of currently running programs kept by UNIX.
> Assign a unique process identifier (PID) to the process.
> iCopy the context of the parent, the process that requested the spawning of the new process.
> Return the new PID to the parent process. This enables the parent process to examine or control the process directly.
After the fork is complete, UNIX runs your program.

12. What Happens when you execute a command?
When you enter 'ls' command to look at the contents of your current working directory, UNIX does a series of things to create an environment for ls and the run it: The shell has UNIX perform a fork. This creates a new process that the shell will use to run the ls program. The shell has UNIX perform an exec of the ls program. This replaces the shell program and data with the program and data for ls and then starts running that new program. The ls program is loaded into the new process context, replacing the text and data of the shell. The ls program performs its task, listing the contents of the current directory.


13. What is a Daemon?
A daemon is a process that detaches itself from the terminal and runs, disconnected, in the background, waiting for requests and responding to them. It can also be defined as the background process that does not belong to a terminal session. Many system functions are commonly performed by daemons, including the sendmail daemon, which handles mail, and the NNTP daemon, which handles USENET news. Many other daemons may exist. Some of the most common daemons are:
> init: Takes over the basic running of the system when the kernel has finished the boot process.
> inetd: Responsible for starting network services that do not have their own stand-alone daemons. For example, inetd usually takes care of incoming rlogin, telnet, and ftp connections.
> cron: Responsible for running repetitive tasks on a regular schedule.

14. What is 'ps' command for?
The ps command prints the process status for some or all of the running processes. The information given are the process identification number (PID),the amount of time that the process has taken to execute so far etc.

15. How would you kill a process?
The kill command takes the PID as one argument; this identifies which process to terminate. The PID of a process can be got using 'ps' command.

16. What is an advantage of executing a process in background?
The most common reason to put a process in the background is to allow you to do something else interactively without waiting for the process to complete. At the end of the command you add the special background symbol, &. This symbol tells your shell to execute the given command in the background.
Example: cp *.* ../backup& (cp is for copy)

17. How do you execute one program from within another?
The system calls used for low-level process creation are execlp() and execvp(). The execlp call overlays the existing program with the new one , runs that and exits. The original program gets back control only when an error occurs.
execlp(path,file_name,arguments..); //last argument must be NULL
A variant of execlp called execvp is used when the number of arguments is not known in advance.
execvp(path,argument_array); //argument array should be terminated by NULL

18. What is IPC? What are the various schemes available?
The term IPC (Inter-Process Communication) describes various ways by which different process running on some operating system communicate between each other. Various schemes available are as follows:
Pipes:
One-way communication scheme through which different process can communicate. The problem is that the two processes should have a common ancestor (parent-child relationship). However this problem was fixed with the introduction of named-pipes (FIFO).

Message Queues :
Message queues can be used between related and unrelated processes running on a machine.

Shared Memory:
This is the fastest of all IPC schemes. The memory to be shared is mapped into the address space of the processes (that are sharing). The speed achieved is attributed to the fact that there is no kernel involvement. But this scheme needs synchronization.

Various forms of synchronisation are mutexes, condition-variables, read-write locks, record-locks, and semaphores.

SECTION - III
MEMORY MANAGEMENT

1. What is the difference between Swapping and Paging?
Swapping:
Whole process is moved from the swap device to the main memory for execution. Process size must be less than or equal to the available main memory. It is easier to implementation and overhead to the system. Swapping systems does not handle the memory more flexibly as compared to the paging systems.
Paging:
Only the required memory pages are moved to main memory from the swap device for execution. Process size does not matter. Gives the concept of the virtual memory.
It provides greater flexibility in mapping the virtual address space into the physical memory of the machine. Allows more number of processes to fit in the main memory simultaneously. Allows the greater process size than the available physical memory. Demand paging systems handle the memory more flexibly.

2. What is major difference between the Historic Unix and the new BSD release of Unix System V in terms of Memory Management?
Historic Unix uses Swapping – entire process is transferred to the main memory from the swap device, whereas the Unix System V uses Demand Paging – only the part of the process is moved to the main memory. Historic Unix uses one Swap Device and Unix System V allow multiple Swap Devices.

3. What is the main goal of the Memory Management?
> It decides which process should reside in the main memory,
> Manages the parts of the virtual address space of a process which is non-core resident,
> Monitors the available main memory and periodically write the processes into the swap device to provide more processes fit in the main memory simultaneously.

4. What is a Map?
A Map is an Array, which contains the addresses of the free space in the swap device that are allocatable resources, and the number of the resource units available there.


This allows First-Fit allocation of contiguous blocks of a resource. Initially the Map contains one entry – address (block offset from the starting of the swap area) and the total number of resources.
Kernel treats each unit of Map as a group of disk blocks. On the allocation and freeing of the resources Kernel updates the Map for accurate information.

5. What scheme does the Kernel in Unix System V follow while choosing a swap device among the multiple swap devices?
Kernel follows Round Robin scheme choosing a swap device among the multiple swap devices in Unix System V.

6. What is a Region?
A Region is a continuous area of a process’s address space (such as text, data and stack). The kernel in a ‘Region Table’ that is local to the process maintains region. Regions are sharable among the process.

7. What are the events done by the Kernel after a process is being swapped out from the main memory?
When Kernel swaps the process out of the primary memory, it performs the following:
> Kernel decrements the Reference Count of each region of the process. If the reference count becomes zero, swaps the region out of the main memory,
> Kernel allocates the space for the swapping process in the swap device,
> Kernel locks the other swapping process while the current swapping operation is going on,
> The Kernel saves the swap address of the region in the region table.

8. Is the Process before and after the swap are the same? Give reason.
Process before swapping is residing in the primary memory in its original form. The regions (text, data and stack) may not be occupied fully by the process, there may be few empty slots in any of the regions and while swapping Kernel do not bother about the empty slots while swapping the process out.
After swapping the process resides in the swap (secondary memory) device. The regions swapped out will be present but only the occupied region slots but not the empty slots that were present before assigning.
While swapping the process once again into the main memory, the Kernel referring to the Process Memory Map, it assigns the main memory accordingly taking care of the empty slots in the regions.

9. What do you mean by u-area (user area) or u-block?
This contains the private data that is manipulated only by the Kernel. This is local to the Process, i.e. each process is allocated a u-area.

10. What are the entities that are swapped out of the main memory while swapping the process out of the main memory?
All memory space occupied by the process, process’s u-area, and Kernel stack are swapped out, theoretically.
Practically, if the process’s u-area contains the Address Translation Tables for the process then Kernel implementations do not swap the u-area.

11. What is Fork swap?
fork() is a system call to create a child process. When the parent process calls fork() system call, the child process is created and if there is short of memory then the child process is sent to the read-to-run state in the swap device, and return to the user state without swapping the parent process. When the memory will be available the child process will be swapped into the main memory.

12. What is Expansion swap?
At the time when any process requires more memory than it is currently allocated, the Kernel performs Expansion swap. To do this Kernel reserves enough space in the swap device. Then the address translation mapping is adjusted for the new virtual address space but the physical memory is not allocated. At last Kernel swaps the process into the assigned space in the swap device. Later when the Kernel swaps the process into the main memory this assigns memory according to the new address translation mapping.

13. How the Swapper works?
The swapper is the only process that swaps the processes. The Swapper operates only in the Kernel mode and it does not uses System calls instead it uses internal Kernel functions for swapping. It is the archetype of all kernel process.

14. What are the processes that are not bothered by the swapper? Give Reason.
> Zombie process: They do not take any up physical memory.
> Processes locked in memories that are updating the region of the process.
> Kernel swaps only the sleeping processes rather than the ‘ready-to-run’ processes, as they have the higher probability of being scheduled than the Sleeping processes.

15. What are the requirements for a swapper to work?
The swapper works on the highest scheduling priority. Firstly it will look for any sleeping process, if not found then it will look for the ready-to-run process for swapping. But the major requirement for the swapper to work the ready-to-run process must be core-resident for at least 2 seconds before swapping out. And for swapping in the process must have been resided in the swap device for at least 2 seconds. If the requirement is not satisfied then the swapper will go into the wait state on that event and it is awaken once in a second by the Kernel.

16. What are the criteria for choosing a process for swapping into memory from the swap device?
The resident time of the processes in the swap device, the priority of the processes and the amount of time the processes had been swapped out.

17. What are the criteria for choosing a process for swapping out of the memory to the swap device?
> The process’s memory resident time,
> Priority of the process and
> The nice value.

18. What do you mean by nice value?
Nice value is the value that controls {increments or decrements} the priority of the process. This value that is returned by the nice () system call. The equation for using nice value is:
Priority = (“recent CPU
usage”/constant) + (base- priority) + (nice value)
Only the administrator can supply the nice value. The nice () system call works for the running process only. Nice value of one process cannot affect the nice value of the other process.

19. What are conditions on which deadlock can occur while swapping the processes?
> All processes in the main memory are asleep.
> All ‘ready-to-run’ processes are swapped out.
> There is no space in the swap device for the new incoming process that are swapped out of the main memory.
> There is no space in the main memory for the new incoming process.

20. What are conditions for a machine to support Demand Paging?
> Memory architecture must based on Pages,
> The machine must support the ‘restartable’ instructions.

21. What is ‘the principle of locality’?
It’s the nature of the processes that they refer only to the small subset of the total data space of the process. i.e. the process frequently calls the same subroutines or executes the loop instructions.

22. What is the working set of a process?
The set of pages that are referred by the process in the last ‘n’, references, where ‘n’ is called the window of the working set of the process.

23. What is the window of the working set of a process?
The window of the working set of a process is the total number in which the process had referred the set of pages in the working set of the process.

24. What is called a page fault?
Page fault is referred to the situation when the process addresses a page in the working set of the process but the process fails to locate the page in the working set. And on a page fault the kernel updates the working set by reading the page from the secondary device.

25. What are data structures that are used for Demand Paging?
Kernel contains 4 data structures for Demand paging. They are,
> Page table entries,
> Disk block descriptors,
> Page frame data table (pfdata),
> Swap-use table.

26. What are the bits that support the demand paging?
Valid, Reference, Modify, Copy on write, Age. These bits are the part of the page table entry, which includes physical address of the page and protection bits.

Page address

Age
Copy on write
Modify
Reference
Valid
Protection




27. How the Kernel handles the fork() system call in traditional Unix and in the System V Unix, while swapping?
Kernel in traditional Unix, makes the duplicate copy of the parent’s address space and attaches it to the child’s process, while swapping. Kernel in System V Unix, manipulates the region tables, page table, and pfdata table entries, by incrementing the reference count of the region table of shared regions.

28. Difference between the fork() and vfork() system call?
During the fork() system call the Kernel makes a copy of the parent process’s address space and attaches it to the child process.
But the vfork() system call do not makes any copy of the parent’s address space, so it is faster than the fork() system call. The child process as a result of the vfork() system call executes exec() system call. The child process from vfork() system call executes in the parent’s address space (this can overwrite the parent’s data and stack ) which suspends the parent process until the child process exits.

29. What is BSS(Block Started by Symbol)?
A data representation at the machine level, that has initial values when a program starts and tells about how much space the kernel allocates for the un-initialized data. Kernel initializes it to zero at run-time.

30. What is Page-Stealer process?
This is the Kernel process that makes rooms for the incoming pages, by swapping the memory pages that are not the part of the working set of a process. Page-Stealer is created by the Kernel at the system initialization and invokes it throughout the lifetime of the system. Kernel locks a region when a process faults on a page in the region, so that page stealer cannot steal the page, which is being faulted in.

31. Name two paging states for a page in memory?
The two paging states are:
> The page is aging and is not yet eligible for swapping,
> The page is eligible for swapping but not yet eligible for reassignment to other virtual address space.

32. What are the phases of swapping a page from the memory?
> Page stealer finds the page eligible for swapping and places the page number in the list of pages to be swapped.
> Kernel copies the page to a swap device when necessary and clears the valid bit in the page table entry, decrements the pfdata reference count, and places the pfdata table entry at the end of the free list if its reference count is 0.

33. What is page fault? Its types?
Page fault refers to the situation of not having a page in the main memory when any process references it.
There are two types of page fault :
> Validity fault,
> Protection fault.

34. In what way the Fault Handlers and the Interrupt handlers are different?
Fault handlers are also an interrupt handler with an exception that the interrupt handlers cannot sleep. Fault handlers sleep in the context of the process that caused the memory fault. The fault refers to the running process and no arbitrary processes are put to sleep.

35. What is validity fault?
If a process referring a page in the main memory whose valid bit is not set, it results in validity fault.
The valid bit is not set for those pages:
> that are outside the virtual address space of a process,
> that are the part of the virtual address space of the process but no physical address is assigned to it.

36. What does the swapping system do if it identifies the illegal page for swapping?
If the disk block descriptor does not contain any record of the faulted page, then this causes the attempted memory reference is invalid and the kernel sends a “Segmentation violation” signal to the offending process. This happens when the swapping system identifies any invalid memory reference.

37. What are states that the page can be in, after causing a page fault?
> On a swap device and not in memory,
> On the free page list in the main memory,
> In an executable file,
> Marked “demand zero”,
> Marked “demand fill”.

38. In what way the validity fault handler concludes?
> It sets the valid bit of the page by clearing the modify bit.
> It recalculates the process priority.

39. At what mode the fault handler executes?
At the Kernel Mode.

40. What do you mean by the protection fault?
Protection fault refers to the process accessing the pages, which do not have the access permission. A process also incur the protection fault when it attempts to write a page whose copy on write bit was set during the fork() system call.

41. How the Kernel handles the copy on write bit of a page, when the bit is set?
In situations like, where the copy on write bit of a page is set and that page is shared by more than one process, the Kernel allocates new page and copies the content to the new page and the other processes retain their references to the old page. After copying the Kernel updates the page table entry with the new page number. Then Kernel decrements the reference count of the old pfdata table entry.
In cases like, where the copy on write bit is set and no processes are sharing the page, the Kernel allows the physical page to be reused by the processes. By doing so, it clears the copy on write bit and disassociates the page from its disk copy (if one exists), because other process may share the disk copy. Then it removes the pfdata table entry from the page-queue as the new copy of the virtual page is not on the swap device. It decrements the swap-use count for the page and if count drops to 0, frees the swap space.

42. For which kind of fault the page is checked first?
The page is first checked for the validity fault, as soon as it is found that the page is invalid (valid bit is clear), the validity fault handler returns immediately, and the process incur the validity page fault. Kernel handles the validity fault and the process will incur the protection fault if any one is present.

43. In what way the protection fault handler concludes?
After finishing the execution of the fault handler, it sets the modify and protection bits and clears the copy on write bit. It recalculates the process-priority and checks for signals.

44. How the Kernel handles both the page stealer and the fault handler?
The page stealer and the fault handler thrash because of the shortage of the memory. If the sum of the working sets of all processes is greater that the physical memory then the fault handler will usually sleep because it cannot allocate pages for a process. This results in the reduction of the system throughput because Kernel spends too much time in overhead, rearranging the memory in the frantic pace.

Are you Not in facebook???

PHILIPS - C# + Winforms - 2 - 6 Yrs - Bangalore

PHILIPS Product Developement Company is looking for C# + Winforms developer for Bangalore location

Years of exp: 2 to 6 yrs

JD :

C# Developer
Winforms / Windows Applications
WCF,WPF,WCP - Preferable


Kindly mail across your updated cv with the following details

Total Exp :
Rel Exp : C# and Winforms
Current CTC:
Exp CTC :
Notice Period:
DOB:
Availability for F2F interview on 7th Feb Thursday : Yes / No

Contact: +9144 6662 3026

Tuesday, January 24, 2012

Saalumarada' Thimmakka - A Peerless Green Champion!


Thimmakka, aged 101*, is a native of Hulikal village in the Magadi taluk of Bangalore Rural district in Karnataka.

She has an unsurpassed credit to her name—some 1000 plus sturdy banyan trees, which she has lovingly tended against all odds, from mere saplings to a sweeping canopy.

Saalumarada Thimmakka (“saalumarada”—“row of trees” in Kannada—is an honorific people have added to her name) and her landless labourer husband Chikkannah could not have children. So one day more than 60 years ago, they started planting trees.

The road to the next village Kudur (Kudoor) was a dry hot one. Ficus (banyan) trees were aplenty near Thimmakka's village. Thimmakka and her husband started grafting saplings from these trees. Ten saplings were grafted in the first year and they were planted along a distance of 20 kilometres near the neighbouring village of Kudur. Fifteen saplings were planted in the second year and 20 in the third year and so on. She used her own meager resources for planting these trees. The couple used to carry pots of water for a distance of four kilometres to water the saplings. They were also protected from grazing cattle by fencing them with thorny shrubs.

The saplings were planted mostly during monsoon season so that sufficient rain water would be available for them to grow. By the onset of the next monsoons, the saplings had invariably taken root.

They covered the whole stretch. The saplings grew to become trees, the trees grew tall, and the couple rejoiced in their children. Chikkanna died in 1990, but Thimmakka continued her life’s work.

Thanks to her unusual labour of love, this illiterate woman is the idol of every environmentalist.

A "living monument of our times" is how the citation of National Citizen's Award describes Thimmakka.

Titles like Vanamitra, Nisargaratna, Vrikshasri and Vrikshapremi, an award by Karnataka government, among many others have been conferred on her.
For one who barely set out of her village once a year, Thimmakka now finds her way to Delhi and Mumbai for tree planting ceremonies. Thimmakka is busy spreading the message of afforestation. She unassumingly suggests that everybody should leave behind some asset for humanity.
She barely ekes out a living from various awards and a monthly pension. But nothing stops her from dreaming big. Now, she has made her will to open up a hospital in her village, so that no poor is affected.

Saalumarada Thimmakka, Hulikal-561101, Kudur, Hubli, Magadi Taluk, Bangalore-Rural dist.

Archive Video: http://www.ndtv.com/video/player/news/thimmakka-the-tree-lady/79918

*age discrepancy
‎'Saalumarada' Thimmakka - A Peerless Green Champion! Thimmakka, aged 101*, is a native of Hulikal village in the Magadi taluk of Bangalore Rural district in Karnataka. She has an unsurpassed credit to her name—some 1000 plus sturdy banyan trees, which she has lovingly tended against all odds, from mere saplings to a sweeping canopy. Saalumarada Thimmakka (“saalumarada”—“row of trees” in Kannada—is an honorific people have added to her name) and her landless labourer husband Chikkannah could not have children. So one day more than 60 years ago, they started planting trees. The road to the next village Kudur (Kudoor) was a dry hot one. Ficus (banyan) trees were aplenty near Thimmakka's village. Thimmakka and her husband started grafting saplings from these trees. Ten saplings were grafted in the first year and they were planted along a distance of 20 kilometres near the neighbouring village of Kudur. Fifteen saplings were planted in the second year and 20 in the third year and so on. She used her own meager resources for planting these trees. The couple used to carry pots of water for a distance of four kilometres to water the saplings. They were also protected from grazing cattle by fencing them with thorny shrubs. The saplings were planted mostly during monsoon season so that sufficient rain water would be available for them to grow. By the onset of the next monsoons, the saplings had invariably taken root. They covered the whole stretch. The saplings grew to become trees, the trees grew tall, and the couple rejoiced in their children. Chikkanna died in 1990, but Thimmakka continued her life’s work. Thanks to her unusual labour of love, this illiterate woman is the idol of every environmentalist. A "living monument of our times" is how the citation of National Citizen's Award describes Thimmakka. Titles like Vanamitra, Nisargaratna, Vrikshasri and Vrikshapremi, an award by Karnataka government, among many others have been conferred on her. For one who barely set out of her village once a year, Thimmakka now finds her way to Delhi and Mumbai for tree planting ceremonies. Thimmakka is busy spreading the message of afforestation. She unassumingly suggests that everybody should leave behind some asset for humanity. She barely ekes out a living from various awards and a monthly pension. But nothing stops her from dreaming big. Now, she has made her will to open up a hospital in her village, so that no poor is affected. Saalumarada Thimmakka, Hulikal-561101, Kudur, Hubli, Magadi Taluk, Bangalore-Rural dist. Archive Video: http://www.ndtv.com/video/player/news/thimmakka-the-tree-lady/79918 *age discrepancy
by: Incredible India

Tuesday, January 17, 2012

Why retailers dont accept Sodexo Coupons



Sodexo: Who exactly is Sodexo? This link gives more information (and this one in more juicier detail), but in summary, Sodexo is a French multinational corporation Sodexo is one of the largest food services and facilities management companies in the world, with 380,000 employees, representing 130 nationalities, present on 34,000 sites in 80 countries. They are the biggest beneficiary in this transaction. Since this is almost like a parallel currency, they have to invest a lot of money upfront to get the govt. machinery working in passing certain laws. They make money in three ways:
a) They receive Rs.100/- worth of coupons, while give back only Rs. 95/- in cash, netting a straight 5% gain.
b) Sodexo coupons usually come with an expiry date (think of it as a currency with expiry date *shudder*). Once its expired, no retail store would accept it and it becomes null and void. However, Sodexo had already received the money from your Company when they issued the coupon (and hence a 100% profit!). There is a complex process through which you can get new coupons issued, but most people would not have the time or the patience to go through the process for getting the new coupons.
c) The biggest of them all. They get money at 0% interest. Have a look at the diagram once again. Day 1, they receive Rs. 100/-. Day 24-34, they give back Rs. 95/-. That is, they have had the money for a full 20-30 days without paying any interest. In fact, till the coupon is used, it is practically free money (and they can lend this money at interest, thereby making money).
So, if this was a win-win-win-win arrangement for all the folks involved!
So, why did the retail store chains suddenly stop taking Sodexo coupons in lieu of items?
There is no clarity on what exactly happened, but here are the news items floating around -
a) They have increased the brokerage from 5% to 9%. That is, the retail chains used to get back Rs. 95/- of their money, but in the revised scenario, would get back Rs. 91/-. Already under pressure for margins, this was not acceptable by retail chains. Presumably, they formed a clique and stopped taking the coupons across the table.
b) The number of days in which cash conversion happens has gone up from 20 days to close to 60 days, thereby impacting the cash cycle of organizations
thereby, resulting in a clique where the retail chains have closed ranks and have decided to put up a fight with Sodexo – to i) reduce the brokerage rate below 5% (and they’ll eventually settle to the original 5% figure) and ii) reduce the cash conversion cycle (and settle back on the 20-30 day figure).
Sodexo certainly has to negotiate and accede to the demands of the retail chains, simply because without them, Sodexo ceases to exist. Retail chains will also join the negotiating table because they will have too much to lose (the corner stone shopkeepers is still accepting Sodexo, and more probably, there is always a possibility that one retail chain breaks away from the clique to grab customers quickly). All in all, this is bound to be a temporary situation (max of 1-2 months), and as usual, the employee is being inconvenienced for the greater good of the mankind or some such.